Journal of Organometallic Chemistry, 197 (1980) C19-C21 © Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preliminary communication

ALKALI METAL HYDRIDES: NEW METALLATING REAGENTS FOR GERMANIUM AND TIN

R.J.P. CORRIU and C. GUERIN

Université des Sciences et Techniques du Languedoc, Laboratoire des Organométalliques, Equipe de recherche associée au C.N.R.S. No. 554, Place Eugène Bataillon, 34060 Montpellier Cedex (France)

(Received June 30th, 1980)

Summary

New procedures for the preparation of organogermyl- and stannyl-sodium or -potassium, which undergo coupling reactions with alkyl, allyl, and benzyl halides and α -enones, are reported.

We previously described a new route for the preparation of silvl anions and especially for R_3Si^{-1} [1]. We found that Si-H and Si-Si bonds are quantitatively cleaved by alkali metal hydrides, e.g. reactions 1, 2:

$R_3SiH \xrightarrow{KH} R_3SiK$		(1)
Me ₃ Si—SiMe ₃ <u>KH/NaH</u>	Me ₃ SiK/Na + Me ₃ SiH	(2)

We have now found that Ge-H, Sn-H and Sn-Sn bonds are also quantitatively cleaved by alkali metal hydrides, e.g. reactions 3-5.

$$R_{3}GeH \xrightarrow{KH/NaH} R_{3}GeK/Na$$
(3)
(R = n-Bu and Ph)

$$R_{3}SnH \xrightarrow{KH/NaH} R_{3}SnK/Na$$
(4)
(R = n-Bu and Ph)

$$Ph_{3}Sn-SnPh_{3} \xrightarrow{KH/NaH} 2 Ph_{3}SnK/Na$$
(5)

Reaction 3 was carried out in dimethoxyethane (DME) at room temperature for 1 h with KH or at 40°C for 4 h with NaH. Reaction 4 was carried out at room temperature using Et₂O, tetrahydrofuran or DME as solvent: quantitative cleavage of the Sn-H bond was obtained in 30 min. Reaction 5 was carried

(2)

Germyi or stannyi anian (solvent)	Electrophile	Temp_(°C)	Product	Yield (%)
$R_3 Gek / Nd$ (Et ₂ O , DME ; R = n - Bu, Ph)	EtI PhCH ₂ Ci	Room temp. Room temp. Room temp.	R ₃ GeEt R ₃ GeCH ₂ Ph R ₃ Ge	70—80
Ph ₃ GeK (DME)	Br	Room temp.	Ph ₃ Ge + Ph ₃ Ge - CH ₂	80 { ^{(75) a} (25) a
Ph ₃ GeK (DME)		78	GePh ₃	70
R ₃ SnK (Et ₂ O,THF,DME; R = Ph,n — Bu)	{ ^{EtI} { PhCH₂CI	0 0	R ₃ SnEt R ₃ SnCH ₂ Ph	60 — 70
Ph ₃ SnK (DME)	Br Br	Room temp.	Ph ₃ Sn + Ph ₃ Sn - CH ₂	70 {(70)a (30)a
Ph ₃ SnK . (THF)	° (78	SnPh ₃	75

ο Γλατιάχις όγ	TDIAIUVI CEDMVI	ANT	OT A MANY	ANTONIC	WINT	VADIONE	CUDCTD	ATTCO
TOTIONS OF	INTADAID-GEAMID	AND	-STRININTE	ANIONS	WITH	VARIOUS	SUDSIR	AILD

^a Ratio of the two isomers.

out in DME at room temperature using two equivalents of alkali metal hydrides. For instance, Ph_3GeH (20 mmol) was slowly added to a stirred suspension of the alkali metal hydride NaH or KH (2.2 mol) in DME. A clear yellow-green solution of Ph_3GeK or Ph_3GeNa was rapidly obtained. When the reaction was complete, the excess of hydride was eliminated by centrifugation to give a clear solution of Ph_3GeM .

Although several procedures are available for the preparation of organogermyl- [2] and organostannyl- [3] alkali metal compounds, our route has advantages in some cases. For instance, the preparation of R_3 GeLi (R = alkyl) by hydrogen-metal exchange with organolithium reagents gives varying results: e.g., metallation of triethylgermane with PhLi or n-BuLi in ethereal solvents gives triethylgermyllithium in less than 10% yield [2]. Another advantage is that reagents are obtained free of alkali halides.

TABLE 1

The reactions of the anions with various substrates were examined, and the results are summarized in Table 1. Organic halides give substitution products in good yields. The 1-bromohex-5-ene gives predominant S_N 2-like substitution products either with Ph₃Ge⁻ or Ph₃Sn⁻ in DME, but a competitive radical process is shown by the formation of cyclic products. (This aspect will be considered in more detail in the full paper). Finally, 1,4-addition to cyclohexenone was observed for Ph₃Ge⁻ and Ph₃Sn⁻ in DME: CuI was not necessary.

References

- 1 R. Corriu and C. Guerin, J. Chem. Soc. Chem. Commun., (1980) 168.
- 2 M. Lesbre, P. Mazerolles and J. Satgé, The Organic Compounds of Germanium, Interscience Publishers John Wiley and Sons Ltd., New York, 1971, p. 646.
- For instance: (a) W.P. Neumann, The Organic Chemistry of Tin, John Wiley, New York, 1970, p. 120;
 (b) M.J. Newlands, in A.K. Sawyer (Ed.), Organotin Compounds, Marcel Dekker, New York, Vol. 3, 1972, p. 881;
 (c) R.C. Poller, The Chemistry of Organotin Compounds, Logos Press, London, 1970, p. 145;
 (d) N.S. Vyazankin, C.A. Razuvaev and O.A. Kruglaya, Organometal. Chem. Rev. A, 3 (1968) 323;
 (e) J.P. Quintard and M. Pereyre, Bull. Soc. Chim. Belg., in press.